- 7. Attempt any one of the following:
 - (a) (i) Differentiate between an electrochemical cell and an electrolytic cell.
 - (ii) Calculate the electrode potential of the copper wire dipped in 0.1M CuSO₄ solution at 25°C. The standard electrode potential of copper is 0.34 V.
 - (b) What is meant by corrosion inhibitors? How is corrosion prevented by cathodic protection?
 - (c) (i) Write a short note on biogas.
 - (ii) Write a short note on softening of water by Zeolites.

Printed Pages—8

1111	any
	EAS202

(Following Paper ID						-		
PAPER ID: 9612	Roll No.			I	\perp			
		:	•		-	,	 	

B. Tech.

(SEM. II) THEORY EXAMINATION 2010-11 ENGINEERING CHEMISTRY

Time: 3 Hours Total Marks: 100

Note: Attempt all questions.

SECTION—A

Cho	oose/	Fill correct answer:		. •	$(20 \times 1 = 20)$
(i)		nich of the following and length?	mol e cu	le possesse	s the smallest
	(a)	F ₂	(b)	Cl2	
	(c)	Br ₂	(d)	I ₂	
(ii)	Wh	ich one is not the allo	tropy o	f carbon?	
	(a)	Graphite	(b)	Fullerene	
	(c)	Diamond	(d)	Bakelite	
(iii)	The	rate of a reaction doe	es not d	epend upon	:
	(a)	Temperature	(b)	Pressure	
	(c)	Concentration	(d)	Catalyst	
(iv)	For	a system Ice ⇌ Wate	er ⇌ V	apur, degree	of freedom,

(v)	S _N ² reaction is accom	panied by of	ASS C	(xiv)	A good fuel should po	ssesses:	
	configuration.		٥.		(a) High calorific val	ue	
(vi)		oounds due to restricted rotation			(b) Low ignition tem	perature	
	around a single bond is ca				(c) High moisture co	ntent	
(vii)	The number of conformati	on of ethane is:			(d) Both (a) and (b)		
	(a) 3	(b) 5	•	(xv)	The oxidation number	of Fe in K ₄ [Fe(C _N) ₆] is:	
,	(c) 7	(d) None			(a) +2	(b) +3	
(viii)	Polypyrrol is I	Polymer.	((c) +1	(d) +4	
(ix)	$F_2C = CF_2$ is a monomer of	f :		(xvi)	The relation between l	HCV and LCV is:	
	(a) Teflon	(b) Glyptal			(a) $LCV = HCV - 0$.09HL	
	(c) Nylon-6	(d) Buna-S			(b) $LCV = HCV + 0$.09HL	
(x)		of SHE (Standard Hydrogen			(c) $HCV = LCV - 0$.09HL	
	Electrode) is:		•		(d) $HCV = LCV + 0$.09HL	
	(a) 1	(b) 2		(xvii)	For preparation of N/20	0 K ₂ Cr ₂ O ₇ solution, the amount	of
	(c) 1.018	(d) Zero	•	•	K ₂ Cr ₂ O ₇ required to di	ssolve in 250 ml water is:	
(xi)	The chemical formula of Z	eolite is:			(a) 0.6125 g	(b) 6.125 g	
	(a) FeSO ₄ ·7H ₂ O				(c) 61.25 g	(d) 612.5 g	
	(b) $Al_2(SO_4)_3 : 18H_2O$			(xviii)	The total number of NN	MR signals in 2-bromopropane i	is:
	(c) Na ₂ Al ₂ O ₄		(((a) 3	(b) 2	
	(d) $Na_2O \cdot Al_2O_3 \cdot x SiO_2$	що			(c) 4	(d) 1	
(xii)	Corrosion is a process of			(xix)		$\rightarrow N_2O_4(g) + \frac{1}{2}O_2(g) \text{ is :}$	
	(a) Oxidation	(b) Reduction		()	(a) Zero order	(b) First order	
	(c) Electrolysis	(d) Erosion					
(xiii)	Finger Print region of 11	R spectroscopy is			(c) Second order	(d) Fractional order	
			•	(xx)	Carbon having four difficulties carbon.	erent groups attached to it is call	ed
202/RF	'W-20661 2		,	EAS202/RFV		3 /Turn Ov	ver

SECTION-B

2. Attempt any three of the following:

 $(10 \times 3 = 30)$

- (a) (i) Explain metallic bond on the basis of molecular orbital theory.
 - (ii) Calculate the bond order of O₂, O⁺², O⁻², and O₂⁻² and arrange them in increasing order of their stability.
- (b) (i) Explain the structure of graphite. Also explain the reasons for its electrical and lubricating properties.
 - (ii) A body centered cubic element of density 10.3 g cm^{-3} has a cell edge of 314 pm. Calculate the atomic mass of the element. (Avogadro's constant = $6.023 \times 10^{23} \text{mol}^{-1}$).
- (c) (i) Give the mechanism of following reactions:

 Beckmann rearrangement

 Diels-Alder reaction.
 - (ii) Show, how does S_N² reaction give rise to inverted product.
- (d) A sample of coal was analysed as follows: Exactly 1.51 gm of coal was weighed into a silica crucible. After heating for 1 hr at 110°C, the residue weighed 1.415 gm. The crucible was then strongly heated for exactly 7 min. at 950°C. The residue weighed 0.528 gm. The crucible was then heated until a constt weight of residue was obtained. The lost residue was found to be 0.254 gm. Calculate the percentage results of above analysis.
- (e) (i) What is optical activity? Give the stereoisomers of Tartaric acid.

ii) Distinguish between hydrogen evolution and oxygen absorption theory of corrosion.

SECTION—C

Note: Attempt all five questions.

(10×5=50)

- 3. Attempt any one of the following:
 - (a) (i) Distinguish between thermoplastic and thermosetting polymers.
 - (ii) How will you prepare Bakelite and Persplex polymers?
 - (b) (i) Assign E, Z and R, S configuration of the following:

$$_{\rm H}^{\rm Ph}$$
 C=C $<_{\rm COOH}^{\rm Ph}$ $_{\rm H_2N}^{\rm Cl}$ C=C $<_{\rm Br}^{\rm COOH}$

- (ii) Explain the term chirality. What is the condition essential for optical activity?
- (c) The following data is obtained in a bomb calorimeter experiments:

Weight of crucible = 3.649 g

Weight of fuel = 1.029 g

Mass of water in calorimeter = 2200 g

Water equivalent of calorimeter = 570 g

Observed rise in temperature = 2.3°C

Cooling correction = 0.047°C

Acid correction = 62.6 calories

Fuse wire correction = 3.8 calories

Cotton thread correction = 1.6 calories

Calculate GCV of fuel sample. If the fuel contains 6.0% H, determine the NCV.

4. Attempt any one of the following:

(a) Calculate the temporary, permanent and total hardness of a sample of water that is analysed as:

$$Mg(HCO_3)_2 = 7.3 \text{ mg/L}, Ca(HCO_3)_2 = 16.2 \text{ mg/L}$$

 $MgCl_2 = 9.5 \text{ mg/L} \text{ and } CaSO_4 = 13.6 \text{ mg/L}.$

- (b) (i) Explain the term chemical shift.
 - (ii) Indicate the number and splitting of signals in the NMR spectra of the anhydrous ethanol.
- (c) (i) Explain S_N^{-1} reaction with an example.
 - (ii) Complete and name the following reactions:

$$2CH_3CHO \xrightarrow{NaOH} ?$$

2 HCHO
$$\xrightarrow{\text{NaOH}}$$
 ?

$$(CH_3)_2 C - N - OH \xrightarrow{H^{\oplus}} ?$$

$$CH_3$$
 $C-NH_2$ $\xrightarrow{NaOH+Br_2}$?

- 5. Attempt any one of the following:
 - (a) (i) Distinguish between order and Molecularity of a reaction.
 - (ii) Calculate the order and molecularity of the following reactions:

$$N_2O_5(g) \to N_2O_4(g) + \frac{1}{2}O_2(g)$$

$$H_2(g) + I_2(g) \rightarrow 2 HI(g)$$

$$CH_3CHO \xrightarrow{\Delta} CH_4 + CO_2$$

$$CH_3COOC_2H_5 + H_2O \xrightarrow{H^0} CH_3COOH + C_2H_5OH$$

- (b) What is phase rule? Draw and explain phase diagram of water.
- (c) Discuss the titrimetric analysis of Acid-base and Redox titration.
- 6. Attempt any one of the following:
 - (a) (i) For a first order reaction, the rate constant is found to be 7 × 10⁻⁷ at 7°C and 9 × 10⁻⁴ at 57°C. Calculate the energy of activation of the reaction.

$$(\log_{10} 7 = 0.8451, \log_{10} 9 = 0.9542)$$

- (ii) What are biopolymers? Give their uses.
- (b) What are organometallic compounds? Give the classification and preparation of organometallics.
- (c) Define the term liquid crystals. Describe the classification and applications of liquid crystals.